Sliding Token on Bipartite Permutation Graphs
نویسندگان
چکیده
Sliding Token is a natural reconfiguration problem in which vertices of independent sets are iteratively replaced by neighbors. We develop techniques that may be useful in answering the conjecture that Sliding Token is polynomial-time decidable on bipartite graphs. Along the way, we give efficient algorithms for Sliding Token on bipartite permutation and bipartite distance-hereditary graphs.
منابع مشابه
The complexity of independent set reconfiguration on bipartite graphs
We settle the complexity of the Independent Set Reconfiguration problem on bipartite graphs under all three commonly studied reconfiguration models. We show that under the token jumping or token addition/removal model the problem is NP-complete. For the token sliding model, we show that the problem remains PSPACE-complete.
متن کاملRandom Generation and Enumeration of Bipartite Permutation Graphs
Connected bipartite permutation graphs without vertex labels are investigated. First, the number of connected bipartite permutation graphs of n vertices is given. Based on the number, a simple algorithm that generates a connected bipartite permutation graph uniformly at random up to isomorphism is presented. Finally an enumeration algorithm of connected bipartite permutation graphs is proposed....
متن کاملOn the linear structure and clique-width of bipartite permutation graphs
Bipartite permutation graphs have several nice characterizations in terms of vertex ordering. Besides, as AT-free graphs, they have a linear structure in the sense that any connected bipartite permutation graph has a dominating path. In the present paper, we elaborate the linear structure of bipartite permutation graphs by showing that any connected graph in the class can be stretched into a "p...
متن کاملLinear structure of bipartite permutation graphs and the longest path problem
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application o...
متن کاملPolynomial-Time Algorithms for Sliding Tokens on Cactus Graphs and Block Graphs
Given two independent sets I, J of a graph G, and imagine that a token (coin) is placed at each vertex of I. The Sliding Token problem asks if one could transform I to J via a sequence of elementary steps, where each step requires sliding a token from one vertex to one of its neighbors so that the resulting set of vertices where tokens are placed remains independent. This problem is PSPACE-comp...
متن کامل